
Artificial Intelligence on the Edge for Space: Benchmarking
Quantisation, Latency, and Power Consumption for On-board Inference

Jiarong Zhang1, Yasir Latif, Tat-Jun Chin

Abstract— Limited power and computation budgets available
on-board small satellites make space a challenging scenario for
intelligent decision making. At the same time, many on-board
problems can greatly benefit from the application of modern
artificial intelligence techniques. In this work, we explore the
use of specialised edge hardware to enable low latency, low-
power on-board inference. Commercial hardware developed
for edge applications poses constraints on the type of network
architectures that can be optimally run on them. In particular,
we use an object detection task to explore the various ways of
training models for the Google Edge TPU and how they affect
task performance during on-board inference. We specifically
look at how power consumption, latency, and performance
are affected by various training choices such as quantisation.
Results are presented for a combination of these parameters,
along with their effects and recommendations to facilitate the
adoption of new tasks on edge hardware for space applications.

I. INTRODUCTION

From rovers to satellites, many space technologies will
greatly benefit from energy efficient, low latency on-board AI
as it enables near-real time situational awareness and decision
making. This is especially important when communication
with ground control is either sparsely available (line of
sight to a receiving station) or not guaranteed at all (deep
space) due the the enormous distances involved. On-board
AI enables satellites to autonomously make mission critical
decisions in-situ without operator input.

Recent advancements in space hardware have reduced
both the cost and physical size of satellites while ride-
share programs have made space more accessible, further
emphasising the need for on-board autonomy. Cubesats are
a standardised subclass of small satellites with a form factor
based on 10 cm cubes units (1U), with each unit weighing
less than 2 kilograms. They are preferred over conventional
satellite development strategies due to reduced development
costs and time. However, a compact size also means limited
power generation, and hence, limited computing and commu-
nication capabilities. A 3U Cubesat can produce 0.13 kWh
per day [1] on average from solar cells, where as each 1U
can provide about 0.04 kWh daily. For comparison, the Mars
Perseverance rover, which is the size of a car and weighs
approximately 1 tonne, is equipped with a radioisotope power
generator capable of producing 2.6 kWh per day [2]. While
AI has enabled capabilities such as slippage and immobilisa-
tion detection [3], clearance and collision detection [4], and
energy-aware path planning [5] on the Perseverance rover,
on-board machine learning capabilities for small satellites

All the authors are with the University of Adelaide, Australia.
1emily.zhang@student.adelaide.edu.au

are still sparse. This can largely be attributed to the limited
power budgets available on the smaller platforms, making
computationally heavy AI payloads difficult to operate in-
orbit, as well as the lack of available datasets to train AI
models for space applications.

A promising computation paradigm, edge computing, en-
courages processing data closer to the source for better
efficiency, autonomy, and optimised network bandwidth util-
isation. It envisions a lot of small, low-powered devices
making local inferences and decisions at the source, instead
of transmitting raw data elsewhere for remote decision
making. This approach is well-suited for the small satellite
use case. Hardware developed for machine learning on the
edge consists of low-powered application-specific integrated
circuits (ASIC) [6], [7] that offer trillions of operations per
second (TOPS) per watt of power. Such hardware addresses
both the power and computational constraints for in-orbit
autonomy on-board a small satellite. However, being ap-
plication specific hardware, the types of computations that
can be run on them is limited, as opposed to a General
Purpose Graphical Processing Unit (GPGPU). Therefore,
general purpose machine learning algorithms need to be
adapted to the specific hardware to conform to underlying
architectural choices. These choices affect representation of
floating point numbers and the types of neural network layers
than can be emulated in hardware.

This work serves as a practical guide for deploying
machine learning algorithms, specifically from an object
detection perspective, to edge devices for space applications.
We outline the training methodology that enables using a
general purpose GPU for training and the edge device for
inference alone, as previously explored in [8], [9]. We further
focus on the comparison of GPU models (running on general
purpose hardware without any power considerations) and
their edge counterparts in terms of task performance, power
consumption and model size. We build upon the work of
[10], [11], [12] who investigated real-time object detection on
edge hardware but did not comment on the aforementioned
metrics. This work aims to address the practical aspects
of on-board machine learning through the task of object
detection. We report findings and make best practice rec-
ommendations for using on-board AI in the space setting.

II. RELATED WORK

AI for space has received a lot of attention recently with
emphasis on efficient on-board inference [7], [13]. Furano
et al. [8] considered on-board machine learning from the
perspective of Earth observation and proposed on-board

image preprocessing to reduce data storage and downlink
bandwidth. They found that by identifying images with
significant cloud cover, more than 50% of imagery can be
discarded and only useful data is sent to ground, saving
bandwidth. To update on-board algorithms, rather than learn-
ing on-board, models are trained on the ground and updated
via satellite uplink. As edge-compatible models are typically
compressed, this is computationally more efficient. A later
work by Furano et al. [9] discussed hardware challenges such
as power budget, memory budget, dependability issues in
the harsh space environment, as well as the availability of
training data for new instruments. For reliability, applying
AI in isolation is recommended so that any failures in
local tasks do not propagate to the rest of the satellite.
To circumvent the initial lack of training data for on-board
models, training with simulated data is recommended until
real data can be collected using on-board sensors and models
updated. The space environment is harsh on electronics due
to cosmic radiation, and unprotected devices are susceptible
to random soft errors such as bit-flips. Enabling on-board
machine learning for satellites will require additional work
towards radiation hardening of the hardware. Efforts towards
radiation characterisation of edge-AI microchips such as
the the Edge TPU and the Intel Myriad X [7] will enable
widespread use on small satellites.

Several recent works have demonstrated applications of
machine learning on the edge using various edge accelera-
tors. The Google Edge TPU [6] has been applied for tasks
such disease detection in bees [10], fruit yield detection [11],
as well as for satellite pose estimation [12]. These works
discuss model training, quantisation, and accuracy/latency
trade-offs involved. These works utilised quantisation on
their detection networks, and the findings generally indicate
that the model accuracy on Edge TPU is comparable to
full-size state-of-the-art GPU models while achieving higher
throughput. Interestingly, the satellite post estimation [12]
work reported a slight increase in accuracy for the detection
network after converting the floating-point, quantisation-
aware trained network to use 8-bit weights and activations.
However, there are no results for the non-quantisation-
aware trained network for comparison. Additionally, the total
power draw of the Dev Board Mini between CPU and TPU
inference is reported, but the power consumption of the TPU
independent of the board is not referenced. Additionally, the
reduction of file size is not reported either.

III. METHODS

Objects in orbit around Earth are tracked using two
dominant modalities: radar [14] and optical telescopes [15].
In these methods, the sensor is pointed at selected angles
toward the sky and collects information about objects which
pass through its field of view. While radar measurements can
provide information like size, altitude, and orbital inclination
of space objects, optical measurements examine light curves
to determine the material and density of space objects. Space
objects can be tracked by combining data from radar and
optical measurements, such as size and material composi-

tion. Information about each tracked object is collected and
updated frequently to predict collisions with satellites, which
would allow time for mission engineers to plan for evasive
manoeuvres if required [16].

Ground-based observations are limited by the range of the
sensor and objects further from Earth may not be observed
at all. Satellites in deep space cannot rely on ground-based
observations. Moreover, a satellite must also be able to
receive radio frequency communications in order to follow
manoeuvring commands. If a satellite has delayed communi-
cations with ground control due to distance, frequency band
access time, or is unable to establish communications at all
due to malfunctioning subsystems, then it has to operate
in an autonomous mode, requiring precise awareness of its
surroundings. These factors highlight the significance of au-
tonomous object detection and avoidance for satellites, as the
reliance on ground-based observations and communication
would be eliminated. Due to its practical significance, we
explore object detection as the sample task to solve on-
board a satellite. In its essence, the problem demonstrates the
capabilities of the general class of object detection tasks, and
the conclusions from this work generalise to similar on-board
object detection tasks such as space-based Earth observation.

Edge accelerators in general and the Google Edge TPU [6]
in particular leverages fast multiply-accumulate operations
in parallel to provide low-power, high-throughput neural
network inference. However, the network weights must be
represented as integers rather than the usual floating point
numbers. This requires a quantisation step (see Sec. III-A),
which needs to be applied to convert the model into an edge
accelerator compatible representation. Therefore, training for
on-board inference can be addressed in mainly two ways as
shown in Fig. 1, which includes three main steps: fine-tuning,
quantisation, and compiling the model for Edge TPU. We
discuss these steps in the rest of this section.

A. Quantisation

The Google Edge TPU only supports models with 8-
bit fixed-point precision due to limited on-chip memory. In
deep learning, neural network models typically operate using
high-precision (32-bit) floating-point numbers. However, for
deployment on edge devices or for efficient inference in
general, it is desirable to use lower-precision, fixed-point
data types (e.g. 8-bit integers) as low precision inference
consumes less memory and computational resources. Quan-
tisation is the process where a model is compressed; model
weights are mapped from 32-bit to 8-bit precision, reduc-
ing file sizes by up to 75%. Quantisation by its nature
is lossy and will reduce the inference accuracy if carried
out blindly. However, the effects of quantisation can be
minimised by performing quantisation-aware training (QAT)
which simulate the quantisation step during the training
process, allowing the network to be trained for the condi-
tions that will be observed during inference on the edge
device. QAT is only viable when the model can be re-
trained (there is enough training data including supervision
labels). However, this might not always be possible. In such

Fig. 1: Visualisation of training configurations for MobileDet architecture.

situation, a pretrained model can be quantised through post-
training quantisation (PTQ) using a representative subset of
input data (no supervision) so that intermediate quantisation
parameters can be learned from the distribution of data and
the subsequent weight parameters. PTQ can be performed on
frozen model inference graphs with as little as 100 sample
images. We explore the effect of both these quantisation
techniques on the performance of the object detection task.

1) Quantisation-aware Training: During quantisation-
aware training, “fake” quantisation nodes are added to the
model graph around computational operations to simulate
the effect of reduced numeric precision in model weights
and parameters. They are called fake because the inputs and
outputs are still floating-point numbers. In 8-bit quantisation,
floating-point numbers (r) are reduced to 8-bit representa-
tions (q) using scale (S) and zero-point (Z) parameters:

q =
r

S
+ Z (1)

The zero-point is a parameter that represents the quantised
value that equates to 0 in floating point, while scale is the
factor by which the lowest and highest values in the floating-
point range (fmin, fmax) are mapped to the lowest and
highest values in 8-bit representation i.e. [qmin, qmax] =
[−128, 127],

S =
fmax − fmin

qmax − qmin
(2)

In the fake quantisation nodes, floating-point (r) param-
eters and converted to 8-bit integers (q), calculations are
performed in 8-bit precision and the result is converted back
into floating-point. This leads to reduction in the prediction
accuracy, due to a loss in numeric precision and rounding
(quantisation error); this process is illustrated in Fig. 2. The
quantisation error encourages the network to learn parame-
ters that are robust to quantisation. The network must adjust
parameters to make accurate predictions while considering
lower precision calculations.

2) Post-training Quantisation: In cases where the model
cannot be re-trained due to lack of supervision labels or ac-
cess to model checkpoints, models can be quantised through
post-training quantisation (PTQ). This method is performed
on the frozen model inference graph, that is the network
weights do not change in the process, as illustrated in the
Fine-tune Without QAT path on Fig. 1. PTQ estimates the

TABLE I: Model summary for MobileDet and
SpaghettiNet architectures.

Model Architecture Multiply-
Accumulate
Operations
(MACs)

Quantised
File Size
(MB)

Pixel 4/6
Edge TPU
Speed
(ms)1

MobileDet-EdgeTPU 1.53 billion 4.3 6.9
SpaghettiNet-S 1.00 billion 3.7 1.3
SpaghettiNet-M 1.25 billion 4.4 1.4
SpaghettiNet-L 1.75 billion 6.0 1.7
1 MobileDet was evaluated on Pixel 4, while SpaghettiNet

variations were evaluated on Pixel 6. Adapted from [17]

minimum and maximum possible values of variables in the
network (i.e., weights, inputs, biases) by running inference
through a set of example inputs, known as the representative
dataset; inputs in the representative dataset must be of
the same format and size as the original training dataset,
though only a small sample is required (around 100 images
are considered here). PTQ converts floating-point values to
8-bit integers using the previously mentioned conversion
equation, using fmin and fmax obtained from inference on
the representative dataset to calculate the scale factor (S).
Unlike QAT models, PTQ models cannot compensate for
quantisation error which results in a less accurate model,
especially for larger networks.

B. Model Architectures

To evaluate the effects of the different quantisation
techniques, two edge-compatible object detection models
are considered in this work: MobileDet-EdgeTPU and
SpaghettiNet-EdgeTPU-S. MobileDets [18] are a
family of object detection networks developed for optimised
inference on low-power hardware using neural architecture
search (NAS). Previously, [11] and [12] among others, have
used MobileDet for real-time object detection on edge,
with [11] reporting better performance than hand-designed
edge-compatible architectures.

Similarly, SpaghettiNet was also developed using
NAS specifically for the Edge TPU, but with different
computation budget allocations and connection patterns than
MobileDet; there are three versions of SpaghettiNet -
S, M, and L, alluding to the amount of multiply-accumulate
operations (MACs) used by each variation. We use the S
variation as it has the smallest file size and better latency
than its larger counterparts. Model details are summarised

Fig. 2: Visualisation of fake quantisation nodes.

in Table I, outlining computational details and performance
comparisons on mobile phone platforms.

C. Porting to the Edge TPU

A quantised model must be compiled specifically for the
Edge TPU to map all compatible operations in the network
to run on the accelerator. This creates one amalgamated
operation that will execute on the TPU upon inference.
Models with unsupported operations can still be compiled,
but the compiler will partition the model graph at the first
point where an unsupported operation occurs. This means
that only certain model architectures are able to take ad-
vantage of accelerated performance on the Edge TPU. As
MobileDet and SpaghettiNet were designed specifi-
cally for the Edge TPU, both models were able to be fully
compiled except post-processing steps such as generating
detection boxes. However, for porting a general model, care
should be taken in considering the types of layers supported
by the particular edge accelerator to guarantee reasonable
performance.

D. Dataset

The training split of the Spacecraft PosE Estimation
Dataset (SPEED) [19] was used as the source of training
and evaluation data for the object detection task. The training
split SPEED consists of 12,000 synthetic grayscale images
of the Tango satellite captured under diverse conditions,
including varying distances, lighting conditions, poses, and
background content, as seen in Fig. 3. The original dataset
was designed for the task of satellite pose estimation.
However, training regime, quantisation mechanism and final
benchmarking can be generalised to any object detection
task. The dataset is used mainly because of its size and
relevance to the in-orbit detection task.

Ground truth bounding boxes were acquired from the code
repository developed as part of [20]. The 12,000 images were
randomly split into training/evaluation sets using 80:20 ratio,
leading to 9,600 and 2,400 images in each set respectively.

IV. EVALUATION

In this section, we evaluate the various training configu-
rations and report performance not only in terms of the task
accuracy, but also the power consumption and model size,
which are all relevant parameters for in-orbit inference.

Both MobileDet and SpaghettiNet have originally
been trained on the COCO dataset [21] for 400,000 steps.
For our detection task, we further trained them an addi-
tional 40,000 steps on the 9,600 training images from the

Fig. 3: Examples from the SPEED dataset, composed of syn-
thetic images of the Tango satellite with varying distances,
lighting conditions, and backgrounds.

SPEED training split. Random horizontal flips and random
crops were applied as data augmentation. Two variations
of the MobileDet model are available: one trained with
quantisation-aware training (uint8), and one without (fp32).
We used the fp32 checkpoint to fine-tune two models for
the detection task, with (QAT) and without quantisation-
aware training (baseline). The baseline model is tested on a
general purpose GPU to report “best-case” performance and
then quantised using the post-training-quantisation (PTQ)
technique. Both the quantised models are then ported to Edge
TPU.

However, the same approach is not applicable to the
SpaghettiNet as only the quantisation-aware trained
model is publicly available. Results are therefore presented
for this variation only.

Each model was evaluated on the 2,400 images test on
the Coral Dev Board Mini using the PyCoral API on top of
TensorFlow Lite API. Model accuracy, inference time, power
consumption and file size reduction are considered for both
MobileDet and SpaghettiNet architectures.

A. Model Accuracy

The performance of each model is measured using the
COCO object detection evaluation metrics. The key indicator
of model accuracy is the mean Average Precision (mAP)
score, which in COCO metrics is calculated as the mean
of each detection class using averaged AP scores across 10
Intersection-over-Union (IoU) thresholds ranging from 0.5
to 0.95, with a step size of 0.05. AP summarises the area

under the curve of precision (P) and recall (R), which are
calculated as

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

where TP , FP , and FN represent true-positive, false-
negative, and false-positive results, respectively. An AP score
is calculated for each IoU threshold. AP is calculated as the
mean of precision values across 101 recall values between 0
and 1, with a step size of 0.01; the precision at each recall
value (R) is found by taking the maximum precision value
for any recall level greater than or equal to the current recall
level.

AP =
1

101

∑
R∈(0,0.01,1)

Pinterp(R) (5)

Pinterp(R) = max
R̂:R̂≥R

P (R̂) (6)

The results are presented in Table II. The “Float” results
were collected directly after training on the floating-point
model, on a single NVIDIA RTX 2060, while the “8-bit”
results were collected after compilation for Edge TPU, on
the Coral Dev Board Mini. The Coral Dev Board Mini is a
single board computer with an integrated Google Edge TPU.

There is a significant loss in model accuracy if post-
training quantisation is applied to MobileDet. The ac-
curacy loss in 8-bit PTQ MobileDet is expected as the
network must work with lower precision than seen during
training, and was not trained further to compensate for
this loss. There is a 0.002 accuracy improvement for the
QAT MobileDet model, and a 0.057 improvement for
SpaghettiNet when converted to 8-bit and executed on
the Edge TPU; this is similar to the findings in the previous
satellite post estimation work [12]. We hypothesise that this
improvement comes from denoising due to dimensionality
reduction introduced by quantisation.

Quantisation-aware trained networks leads to a smaller
accuracy loss between the floating-point baseline and 8-bit
QAT MobileDet models. As the network parameters have
been trained to expect 8-bit precision values, this results in
better accuracy for the 8-bit QAT model. The 8-bit QAT
MobileDet result has a small accuracy drop compared to
the baseline floating-point model, but is considerably more
accurate than the 8-bit PTQ model. The same comparison is
not possible for SpaghettiNet, however one can deduce
that it follows a similar pattern; the floating-point QAT model
has lower accuracy than the non-QAT baseline, however 8-
bit quantised QAT models have significantly better accuracy

TABLE II: Comparison of model accuracy before and after
quantisation.

Model Architecture
mAP

Baseline
(Float)

QAT
(Float)

PTQ
(8-bit)

QAT
(8-bit)

MobileDet-EdgeTPU 0.875 0.868 0.724 0.870
SpaghettiNet-S - 0.850 - 0.907

Fig. 4: Example of detection results; ground truth box is out-
lined in blue and prediction is red. Top: PTQ MobileDet,
middle: QAT MobileDet, bottom: QAT SpaghettiNet.

than PTQ models. See Fig. 4 for a visualisation of predicted
bounding boxes by the three models.

B. Inference Time

Inference times includes time taken to load the image
into RAM in addition to making bounding box predictions.
The inference times presented in Table III are averaged over
the 2,400 images of the test set, each image is of size
1920 x 1200 pixels. Inference times were collected on the
Coral Dev Board Mini. Even though both model architectures
were optimised for the Edge TPU, the uncompiled 8-bit
quantised models were run and timed on the CPU of the Dev
Board Mini (Quad-core ARM Cortex-A35) for completeness.

The ARM CPU represents an alternative low-power edge
computing device that might be present on-board a satellite.

TABLE III: Inference times for detections.

Model Architecture

Inference Time
on ARM CPU
(ms)

Inference Time
on Edge TPU
(ms)

PTQ QAT PTQ QAT
MobileDet-EdgeTPU 936 939 33.7 33.0
SpaghettiNet-S - 654 - 37.2

The difference in inference time between PTQ and QAT
MobileDet is negligible on both processors, this indi-
cates there is no strong relationship between quantisation
method and inference time. Average inference time on
SpaghettiNet was measured to be slightly longer than
on MobileDet using the Edge TPU, which conflicts with
the official results provided by TensorFlow [17]. This may be
due to the difference in hardware setup for the official bench-
marks; MobileDet-EdgeTPU was evaluated on Google
Pixel 4, while SpaghettiNet variations were evaluated
on Google Pixel 6 as noted in Table I. The two phones have
different processor designs, and it would be inappropriate to
draw comparisons unless both models were assessed on the
same hardware.

C. Power Consumption

Edge TPU power consumption during inference time was
monitored using a power metre over the USB-C power
connection to the Dev Board Mini. For reference, the single-
board computer consumes about 0.5 watts when idle. The
power consumption of the Edge TPU during inference for
different models are presented in Table IV.

TABLE IV: Comparison of Edge TPU power consumption.

Model Architecture Power Consumption (watts)
PTQ QAT

MobileDet-EdgeTPU 0.50 0.50
SpaghettiNet-S - 0.30

According to official benchmarks [22], SpaghettiNet
consumed less than 70% of the energy used by MobileDet
on the COCO object detection task. This is corroborated by
the results of our evaluation. Power consumption was the
same for the PTQ and QAT MobileDet models, which
suggest that the quantisation method does not affect power
consumption.

D. File Size

As model weights are compressed from 32-bits floating-
point numbers to 8-bit integers, the model file size is also
reduced. Table V summarises the file size reduction for both
model architectures.

The QAT float model is slightly larger than the baseline
non-QAT float model as the QAT model has additional fake
quantisation nodes. 8-bit PTQ models are slightly larger than
8-bit QAT models because PTQ models have “dequantise”
nodes after compilation to Edge TPU, as the PTQ model’s

TABLE V: Effect of quantisation on file size.

Model Architecture
File Size (MB)

Baseline
(Float)

QAT
(Float)

PTQ
(8-bit)

QAT
(8-bit)

MobileDet-EdgeTPU 13.7 14.0 4.71 4.48
SpaghettiNet-S - 13.9 - 4.70

post-processing operators expect floating-point values. On
average, the file size after compilation is about one-third of
the original model. Quantised models have smaller sizes to
better fit on memory-limited devices. The Edge TPU has
an 8MB SRAM to fit the model’s inference executable and
model parameters; storing parameter data in Edge TPU RAM
results in quicker inference speeds compared to retrieving the
parameter data from an external memory source, so small
models are more desirable for inference on Edge TPU.

E. Discussion

For the object detection task, the MobileDet architecture
produced a smaller, faster model for the Edge TPU, while the
SpaghettiNet model was more accurate and consumed
less power. Quantisation-aware trained models lead to better
detection accuracy, but requires a sufficient amount of train-
ing data and training time for the network to adapt to the
low precision arithmetic. Post-training quantisation results
in more noticeable accuracy loss, however only requires a
small representative dataset to calibrate the model.

Based on these findings, the first decision point for on-
board AI deployment should be data availability. For a
new task where supervision data is available, the most
fruitful approach is to fine-tune a quantisation-aware net-
work using MobileDet if latency is mission critical, or
SpaghettiNet to prioritise detection accuracy and power
efficiency. Post-training quantisation might be the last resort
when no supervision data is available but a small represen-
tative dataset exists for a task that the network is already
trained for. It should be noted that PTQ does not fine-tune
the network for the new task, but only learns the quantisation
parameters based on the distribution of the input samples.

V. CONCLUSION

This paper looks at the practical considerations in fine-
tuning an object detection model for use on-board a satellite.
To cater for the Size, Weight and Power (SWaP) constraints
on-board satellites, the use of edge accelerators has been
explored. We have compared two quantisation techniques for
two network architectures, and presented how they affected
model accuracy, inference time, power consumption, and file
size for the task of in-orbit object detection. The results
demonstrate that quantisation-aware training is a must to
ensure model performance on the TPU accelerator, providing
performance comparable to full precision model running on
a general purpose GPU. Furthermore, network architecture
design leads to variations in power consumption and latency,
which might be dictate the choice of one over the other
depending on the power budget available on-board.

REFERENCES

[1] D. Selva and D. Krejci, “A survey and assessment of the capabilities
of Cubesats for Earth observation,” Acta Astronautica, vol. 74, pp.
50–68, May 2012.

[2] mars.nasa.gov, “Learn About the Rover - NASA.” [Online]. Available:
https://mars.nasa.gov/mars2020/spacecraft/rover/

[3] R. Gonzalez, D. Apostolopoulos, and K. Iagnemma, “Slippage and
immobilization detection for planetary exploration rovers via ma-
chine learning and proprioceptive sensing,” Journal of Field Robotics,
vol. 35, no. 2, pp. 231–247, 2018.

[4] K. Otsu, G. Matheron, S. Ghosh, O. Toupet, and M. Ono, “Fast ap-
proximate clearance evaluation for rovers with articulated suspension
systems,” Journal of Field Robotics, vol. 37, no. 5, pp. 768–785, 2020.

[5] A. Lopez Arreguin, S. Montenegro, and E. Dilger, “Towards in-situ
characterization of regolith strength by inverse terramechanics and
machine learning: A survey and applications to planetary rovers,”
Planetary and Space Science, vol. 204, p. 105271, Sept. 2021.

[6] Google Cloud, “Edge TPU.” [Online]. Available: https://cloud.google.
com/edge-tpu

[7] J. Goodwill, G. Crum, J. Mackinnon, C. Brewer, M. Monaghan,
T. Wise, and C. Wilson, “NASA SpaceCube Edge TPU SmallSat
Card for Autonomous Operations and Onboard Science-Data
Analysis,” Virtual, Aug. 2021, nTRS Author Affiliations: Goddard
Space Flight Center, GRC LERCIP NTRS Report/Patent Number:
SSC21-VII-08 NTRS Document ID: 20210019764 NTRS Research
Center: Goddard Space Flight Center (GSFC). [Online]. Available:
https://ntrs.nasa.gov/citations/20210019764

[8] G. Furano, A. Tavoularis, and M. Rovatti, “AI in space: applications
examples and challenges,” in 2020 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Oct. 2020, pp. 1–6, iSSN: 2377-7966.

[9] G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois,
A. Tavoularis, J. Byrne, L. Buckley, M. Psarakis, K.-O. Voss, and
L. Fanucci, “Towards the Use of Artificial Intelligence on the Edge in
Space Systems: Challenges and Opportunities,” IEEE Aerospace and
Electronic Systems Magazine, vol. 35, no. 12, pp. 44–56, Dec. 2020,
conference Name: IEEE Aerospace and Electronic Systems Magazine.

[10] D. Mrozek, R. Grny, A. Wachowicz, and B. Małysiak-Mrozek, “Edge-
Based Detection of Varroosis in Beehives with IoT Devices with
Embedded and TPU-Accelerated Machine Learning,” Applied Sci-

ences, vol. 11, no. 22, p. 11078, Jan. 2021, number: 22 Publisher:
Multidisciplinary Digital Publishing Institute.

[11] E. Assunção, P. D. Gaspar, K. Alibabaei, M. P. Simões, H. Proença,
V. N. G. J. Soares, and J. M. L. P. Caldeira, “Real-Time Image
Detection for Edge Devices: A Peach Fruit Detection Application,”
Future Internet, vol. 14, no. 11, p. 323, Nov. 2022, number: 11
Publisher: Multidisciplinary Digital Publishing Institute.

[12] A. Lotti, D. Modenini, P. Tortora, M. Saponara, and M. A. Perino,
“Deep Learning for Real Time Satellite Pose Estimation on Low Power
Edge TPU,” June 2022, arXiv:2204.03296 [cs].

[13] R. Bayer, J. Priest, and P. Tözün, “Reaching the edge of the edge:
Image analysis in space,” 2023.

[14] NASA, “ARES | Orbital Debris Program Office | Radar
Measurements.” [Online]. Available: https://www.orbitaldebris.jsc.
nasa.gov/measurements/radar.html

[15] ——, “ARES | Orbital Debris Program Office | Optical
Measurements.” [Online]. Available: https://www.orbitaldebris.jsc.
nasa.gov/measurements/optical.html

[16] ——, “ARES | Orbital Debris Program Office | Debris Modeling.”
[Online]. Available: https://www.orbitaldebris.jsc.nasa.gov/modeling/

[17] TensorFlow, “TensorFlow 1 Detection Model Zoo.” [Online].
Available: https://github.com/tensorflow/models/blob/master/research/
object detection/g3doc/tf1 detection zoo.md

[18] Y. Xiong, H. Liu, S. Gupta, B. Akin, G. Bender, Y. Wang, P.-J.
Kindermans, M. Tan, V. Singh, and B. Chen, “MobileDets: Searching
for Object Detection Architectures for Mobile Accelerators,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 3824–3833, iSSN: 2575-7075.

[19] S. Sharma, T. H. Park, and S. D’Amico, “Spacecraft Pose
Estimation Dataset (SPEED),” 2022. [Online]. Available: https:
//purl.stanford.edu/dz692fn7184

[20] B. Chen, J. Cao, A. Parra, and T.-J. Chin, “Satellite Pose Estimation
with Deep Landmark Regression and Nonlinear Pose Refinement,”
Aug. 2019, arXiv:1908.11542 [cs].

[21] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft
COCO: Common Objects in Context,” Feb. 2015, arXiv:1405.0312
[cs]. [Online]. Available: http://arxiv.org/abs/1405.0312

[22] S. Gupta and M. White, “Improved On-Device ML
on Pixel 6, with Neural Architecture Search,” Nov
2021. [Online]. Available: https://blog.research.google/2021/11/
improved-on-device-ml-on-pixel-6-with.html

